


Higher Engineering Mathematics

Why is knowledge of mathematics important in engineering?

A career in any engineering or scientific field will
require both basic and advanced mathematics. Without
mathematics to determine principles, calculate dimen-
sions and limits, explore variations, prove concepts, and
so on, there would be no mobile telephones, televisions,
stereo systems, video games, microwave ovens, comput-
ers, or virtually anything electronic. There would be no
bridges, tunnels, roads, skyscrapers, automobiles, ships,
planes, rockets or most things mechanical. There would
be no metals beyond the common ones, such as iron
and copper, no plastics, no synthetics. In fact, society
would most certainly be less advanced without the use
of mathematics throughout the centuries and into the
future.

Electrical engineers require mathematics to design,
develop, test, or supervise the manufacturing and instal-
lation of electrical equipment, components, or systems
for commercial, industrial, military, or scientific use.

Mechanical engineers require mathematics to perform
engineering duties in planning and designing tools,
engines, machines, and other mechanically functioning
equipment; they oversee installation, operation, mainte-
nance, and repair of such equipment as centralised heat,
gas, water, and steam systems.

Aerospace engineers require mathematics to perform
a variety of engineering work in designing, construct-
ing, and testing aircraft, missiles, and spacecraft; they
conduct basic and applied research to evaluate adapt-
ability of materials and equipment to aircraft design and
manufacture and recommend improvements in testing
equipment and techniques.

Nuclear engineers require mathematics to conduct
research on nuclear engineering problems or apply prin-

ciples and theory of nuclear science to problems con-
cerned with release, control, and utilisation of nuclear
energy and nuclear waste disposal.

Petroleum engineers require mathematics to devise
methods to improve oil and gas well production and
determine the need for new or modified tool designs;
they oversee drilling and offer technical advice to
achieve economical and satisfactory progress.

Industrial engineers require mathematics to design,
develop, test, and evaluate integrated systems for man-
aging industrial production processes, including human
work factors, quality control, inventory control, logis-
tics and material flow, cost analysis, and production
co-ordination.

Environmental engineers require mathematics to
design, plan, or perform engineering duties in the
prevention, control, and remediation of environmen-
tal health hazards, using various engineering disci-
plines; their work may include waste treatment, site
remediation, or pollution control technology.

Civil engineers require mathematics in all levels in
civil engineering – structural engineering, hydraulics
and geotechnical engineering are all fields that employ
mathematical tools such as differential equations, tensor
analysis, field theory, numerical methods and operations
research.

Knowledge of mathematics is therefore needed by each
of the engineering disciplines listed above.

It is intended that this text – Higher Engineering Mathe-
matics – will provide a step-by-step approach to learning
fundamental mathematics needed for your engineering
studies.
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Preface

This seventh edition of Higher Engineering Mathe-
matics covers essential mathematical material suitable
for students studying Degrees, Foundation Degrees,
and Higher National Certificate and Diploma
courses in Engineering disciplines.

The text has been conveniently divided into the
following 12 convenient categories: number and
algebra, geometry and trigonometry, graphs, complex
numbers, matrices and determinants, vector geome-
try, differential calculus, integral calculus, differential
equations, statistics and probability, Laplace transforms
and Fourier series.

Increasingly, difficulty in understanding algebra is
proving a problem for many students as they commence
studying engineering courses. Inevitably there are a lot
of formulae and calculations involved with engineering
studies that require a sound grasp of algebra. On the
website, available to all, is a document which offers a
quick revision of the main areas of algebra essential
for further study, i.e. basic algebra, simple equations,
transposition of formulae, simultaneous equations and
quadratic equations.

For this edition, new material has been added on
loci, eigenvalues and eigenvectors, points of inflexion,
double and triple integrals, permutations and combina-
tions and Laplace transforms of the Heaviside function,
together with material that was previously on the web-
site, that is, inequalities, Boolean algebra and logic
circuits, sampling and estimation theories, significance
testing, and Chi square and distribution-free tests.

The primary aim of the material in this text is to
provide the fundamental analytical and underpinning
knowledge and techniques needed to successfully
complete scientific and engineering principles modules
of Degree, Foundation Degree and Higher National
Engineering programmes. The material has been
designed to enable students to use techniques learned
for the analysis, modelling and solution of realistic
engineering problems at Degree and Higher National
level. It also aims to provide some of the more advanced
knowledge required for those wishing to pursue careers

in mechanical engineering, aeronautical engineering,
electrical and electronic engineering, communications
engineering, systems engineering and all variants of
control engineering.

In Higher Engineering Mathematics 7th Edition,
theory is introduced in each chapter by a full outline
of essential definitions, formulae, laws, procedures, etc;
problem solving is extensively used to establish and
exemplify the theory. It is intended that readers will gain
real understanding through seeing problems solved and
then through solving similar problems themselves.

Access to software packages such as Maple, Mathe-
matica and Derive, or a graphics calculator, will enhance
understanding of some of the topics in this text.

Each topic considered in the text is presented in a
way that assumes in the reader only knowledge attained
in BTEC National Certificate/Diploma, or similar, in an
Engineering discipline.

Higher Engineering Mathematics 7th Edition pro-
vides a follow-up to Engineering Mathematics 7th
Edition.

This textbook contains some 1020 worked prob-
lems, followed by over 1900 further problems
(with answers), arranged within 269 Practice Exer-
cises. Some 512 line diagrams further enhance
understanding.

Worked solutions to all 1900 of the further problems
has been prepared and can be accessed free by students
and staff via the website (see page xiv).

At the end of the text, a list of Essential Formulae
is included for convenience of reference.

At intervals throughout the text are some 20 Revi-
sion Tests to check understanding. For example, Revi-
sion Test 1 covers the material in Chapters 1 to 5,
Revision Test 2 covers the material in Chapters 6
to 8, Revision Test 3 covers the material in Chap-
ters 9 to 11, and so on. An Instructor’s Manual,
containing full solutions to the Revision Tests, is
available free to lecturers/instructors via the website
(see page xiv).



xiv Preface

‘Learning by example’ is at the heart of Higher
Engineering Mathematics 7th Edition.

JOHN BIRD
Royal Naval School of Marine Engineering,

HMS Sultan,
formerly University of Portsmouth
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a
d2y

dx2
+ b
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+ cy = f (x)

55. Power series methods of solving ordinary differential equations ×
56. An introduction to partial differential equations ×
57. Presentation of statistical data ×
58. Mean, median, mode and standard deviation ×
59. Probability ×
60. The binomial and Poisson distributions ×
61. The normal distribution ×
62. Linear correlation ×
63. Linear regression ×
64. Sampling and estimation theories ×
65. Significance testing ×
66. Chi-square and distribution-free tests ×
67. Introduction to Laplace transforms ×
68. Properties of Laplace transforms ×
69. Inverse Laplace transforms ×
70. The Laplace transform of the Heaviside function

71. Solution of differential equations using Laplace transforms

72. The solution of simultaneous differential equations using ×
Laplace transforms

73. Fourier series for periodic functions of period 2π ×
74. Fourier series for non-periodic functions over range 2π ×
75. Even and odd functions and half-range Fourier series ×
76. Fourier series over any range ×
77. A numerical method of harmonic analysis ×
78. The complex or exponential form of a Fourier series ×



This page intentionally left blank



Section A

Number and algebra



This page intentionally left blank



Chapter 1

Algebra

Why it is important to understand: Algebra, polynomial division and the factor and remainder theorems

It is probably true to say that there is no branch of engineering, physics, economics, chemistry or computer
science which does not require the understanding of the basic laws of algebra, the laws of indices, the
manipulation of brackets, the ability to factorise and the laws of precedence. This then leads to the ability
to solve simple, simultaneous and quadratic equations which occur so often. The study of algebra also
revolves around using and manipulating polynomials. Polynomials are used in engineering, computer
programming, software engineering, in management, and in business. Mathematicians, statisticians and
engineers of all sciences employ the use of polynomials to solve problems; among them are aerospace
engineers, chemical engineers, civil engineers, electrical engineers, environmental engineers, industrial
engineers, materials engineers, mechanical engineers and nuclear engineers. The factor and remainder
theorems are also employed in engineering software and electronic mathematical applications, through
which polynomials of higher degrees and longer arithmetic structures are divided without any complexity.
The study of algebra, equations, polynomial division and the factor and remainder theorems is therefore
of some considerable importance in engineering.

At the end of this chapter, you should be able to:

• understand and apply the laws of indices
• understand brackets, factorisation and precedence
• transpose formulae and solve simple, simultaneous and quadratic equations
• divide algebraic expressions using polynomial division
• factorise expressions using the factor theorem
• use the remainder theorem to factorise algebraic expressions

1.1 Introduction

In this chapter, polynomial division and the factor
and remainder theorems are explained (in Sections 1.4
to 1.6). However, before this, some essential algebra
revision on basic laws and equations is included.
For further algebra revision, go to the website:
www.routledge.com/cw/bird

1.2 Revision of basic laws

(a) Basic operations and laws of indices
The laws of indices are:

(i) am × an = am+n (ii)
am

an
= am−n

(iii) (am)n = am×n (iv) a
m
n = n

√
am

(v) a−n = 1

an
(vi) a0 = 1

Higher Engineering Mathematics. 978-0-415-66282-6, © 2014 John Bird. Published by Taylor & Francis. All rights reserved.
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Problem 1. Evaluate 4a2bc3−2ac when a =2,
b = 1

2 and c = 1 1
2

4a2bc3 − 2ac = 4(2)2
(

1
2

)(
3

2

)3

− 2(2)

(
3

2

)

= 4 × 2 × 2 × 3 × 3 × 3

2 × 2 × 2 × 2
− 12

2

= 27 − 6 = 21

Problem 2. Multiply 3x + 2y by x − y

3x + 2y

x − y

Multiply by x → 3x2 + 2xy

Multiply by −y → −3xy − 2y2

Adding gives: 3x2 − x y − 2 y2

Alternatively,

(3x + 2y)(x − y)= 3x2 − 3xy + 2xy − 2y2

= 3x2 − x y − 2 y2

Problem 3. Simplify
a3b2c4

abc−2 and evaluate when

a = 3, b = 1
8 and c = 2

a3b2c4

abc−2 = a3−1b2−1c4−(−2) = a2bc6

When a = 3, b = 1
8 and c = 2,

a2bc6 = (3)2
(

1
8

)
(2)6 = (9)

(
1
8

)
(64)= 72

Problem 4. Simplify
x2y3 + xy2

xy

x2y3 + xy2

xy
= x2 y3

xy
+ xy2

xy

= x2−1 y3−1 + x1−1y2−1

= x y2 + y or y(x y + 1)

Problem 5. Simplify
(x2√y)(

√
x 3

√
y2)

(x5y3)
1
2

(x2√y)(
√

x 3
√

y2)

(x5y3)
1
2

= x2y
1
2 x

1
2 y

2
3

x
5
2 y

3
2

= x2+ 1
2 − 5

2 y
1
2 + 2

3 − 3
2

= x0y− 1
3

= y− 1
3 or

1

y
1
3

or
1

3
√

y

Now try the following Practice Exercise

Practice Exercise 1 Basic algebraic
operations and laws of indices (Answers on
page 830)

1. Evaluate 2ab + 3bc − abc when a = 2,
b = −2 and c = 4

2. Find the value of 5pq2r3 when p = 2
5 ,

q = −2 and r = −1

3. From 4x − 3y + 2z subtract x + 2y − 3z.

4. Multiply 2a − 5b + c by 3a + b

5. Simplify (x2y3z)(x3yz2) and evaluate when
x = 1

2 , y = 2 and z = 3

6. Evaluate (a
3
2 bc−3)(a

1
2 b− 1

2 c) when a =3,
b = 4 and c = 2

7. Simplify
a2b + a3b

a2b2

8. Simplify
(a3b

1
2 c− 1

2 )(ab)
1
3

(
√

a3
√

bc)

(b) Brackets, factorisation and precedence

Problem 6. Simplify a2− (2a − ab)− a(3b+ a)

a2− (2a − ab)− a(3b+ a)

= a2 − 2a + ab − 3ab − a2

= −2a − 2ab or −2a(1 + b)
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Problem 7. Remove the brackets and simplify the
expression:

2a − [3{2(4a − b)− 5(a + 2b)} + 4a]

Removing the innermost brackets gives:

2a − [3{8a − 2b − 5a − 10b} + 4a]

Collecting together similar terms gives:

2a − [3{3a − 12b} + 4a]

Removing the ‘curly’ brackets gives:

2a − [9a − 36b + 4a]

Collecting together similar terms gives:

2a − [13a − 36b]

Removing the square brackets gives:

2a − 13a + 36b = −11a+36b or

36b− 11a

Problem 8. Factorise (a) xy − 3xz
(b) 4a2 + 16ab3 (c) 3a2b − 6ab2 + 15ab

(a) xy − 3xz = x( y − 3z)

(b) 4a2 + 16ab3 = 4a(a + 4b3)

(c) 3a2b − 6ab2 + 15ab = 3ab(a − 2b + 5)

Problem 9. Simplify 3c + 2c × 4c + c ÷ 5c − 8c

The order of precedence is division, multiplication,
addition, and subtraction (sometimes remembered
by BODMAS). Hence

3c + 2c × 4c + c ÷ 5c − 8c

= 3c + 2c × 4c +
( c

5c

)
− 8c

= 3c + 8c2 + 1

5
− 8c

= 8c2 − 5c + 1
5

or c(8c − 5)+ 1
5

Problem 10. Simplify
(2a − 3)÷4a +5 × 6−3a

(2a − 3)÷4a + 5 × 6 − 3a

= 2a − 3
4a

+ 5 × 6 − 3a

= 2a − 3

4a
+ 30 − 3a

= 2a

4a
− 3

4a
+ 30 − 3a

= 1

2
− 3

4a
+ 30 − 3a = 30

1
2

− 3
4a

− 3a

Now try the following Practice Exercise

Practice Exercise 2 Brackets, factorisation
and precedence (Answers on page 830)

1. Simplify 2( p + 3q − r)− 4(r − q + 2p)+ p

2. Expand and simplify (x + y)(x − 2y)

3. Remove the brackets and simplify:

24p − [2{3(5p − q)− 2( p + 2q)} + 3q]

4. Factorise 21a2b2 − 28ab

5. Factorise 2xy2 + 6x2y + 8x3y

6. Simplify 2y + 4 ÷ 6y + 3 × 4 − 5y

7. Simplify 3 ÷ y + 2 ÷ y − 1

8. Simplify a2 − 3ab × 2a ÷ 6b + ab

1.3 Revision of equations

(a) Simple equations

Problem 11. Solve 4 − 3x = 2x − 11

Since 4 − 3x = 2x − 11 then 4 + 11 = 2x + 3x

i.e. 15 = 5x from which, x = 15

5
= 3

Problem 12. Solve

4(2a − 3)− 2(a − 4)= 3(a − 3)− 1



Se
ct

io
n

A

6 Higher Engineering Mathematics

Removing the brackets gives:

8a − 12 − 2a + 8 = 3a − 9 − 1

Rearranging gives:

8a − 2a − 3a = −9 − 1 + 12− 8

i.e. 3a = −6

and a= −6

3
= −2

Problem 13. Solve
3

x − 2
= 4

3x + 4

By ‘cross-multiplying’: 3(3x + 4)= 4(x − 2)

Removing brackets gives: 9x + 12= 4x − 8

Rearranging gives: 9x − 4x = −8 − 12

i.e. 5x = −20

and x = −20

5
= −4

Problem 14. Solve

(√
t + 3√

t

)

= 2

√
t

(√
t + 3√

t

)

= 2
√

t

i.e.
√

t + 3= 2
√

t

and 3= 2
√

t − √
t

i.e. 3= √
t

and 9= t

(c) Transposition of formulae

Problem 15. Transpose the formula v = u + f t

m
to make f the subject.

u + f t

m
= v from which,

f t

m
= v − u

and m

(
f t

m

)

= m(v − u)

i.e. f t = m(v − u)

and f = m

t
(v − u)

Problem 16. The impedance of an a.c. circuit is
given by Z = √

R2 + X2. Make the reactance X the
subject.

√
R2 + X2 = Z and squaring both sides gives

R2 + X2 = Z2, from which,

X2 = Z2 − R2 and reactance X =
√

Z2 − R2

Problem 17. Given that
D

d
=

√(
f + p

f − p

)

express p in terms of D, d and f .

Rearranging gives:

√(
f + p

f − p

)

= D

d

Squaring both sides gives:
f + p

f − p
= D2

d2

‘Cross-multiplying’ gives:

d2( f + p)= D2( f − p)

Removing brackets gives:

d2 f + d2 p = D2 f − D2 p
Rearranging gives: d2 p + D2 p = D2 f − d2 f

Factorising gives: p(d2 + D2)= f (D2 − d2)

and p= f (D2 −d2)

(d2 + D2)

Now try the following Practice Exercise

Practice Exercise 3 Simple equations and
transposition of formulae (Answers on
page 830)

In problems 1 to 4 solve the equations

1. 3x − 2 − 5x = 2x − 4

2. 8 + 4(x − 1)− 5(x − 3)= 2(5 − 2x)

3.
1

3a − 2
+ 1

5a + 3
= 0

4.
3
√

t

1 − √
t

= −6

5. Transpose y = 3(F − f )

L
for f
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6. Make l the subject of t = 2π

√
l

g

7. Transpose m = µL

L + rC R
for L

8. Make r the subject of the formula
x

y
= 1 + r2

1 − r2

(d) Simultaneous equations

Problem 18. Solve the simultaneous equations:

7x − 2y = 26 (1)

6x + 5y = 29 (2)

5×equation (1) gives:

35x − 10y = 130 (3)

2×equation (2) gives:

12x + 10y = 58 (4)

Equation (3)+equation (4) gives:

47x + 0 = 188

from which, x = 188

47
= 4

Substituting x = 4 in equation (1) gives:

28 − 2y = 26

from which, 28 − 26 = 2y and y=1

Problem 19. Solve
x

8
+ 5

2
= y (1)

11 + y

3
= 3x (2)

8×equation (1) gives: x + 20 = 8y (3)

3×equation (2) gives: 33 + y = 9x (4)

i.e. x − 8y = −20 (5)

and 9x − y = 33 (6)

8×equation (6) gives: 72x − 8y = 264 (7)

Equation (7) − equation (5) gives:

71x = 284

from which, x= 284

71
= 4

Substituting x = 4 in equation (5) gives:

4 − 8y = −20

from which, 4 + 20 = 8y and y = 3

(e) Quadratic equations

Problem 20. Solve the following equations by
factorisation:
(a) 3x2 − 11x − 4 = 0

(b) 4x2 + 8x + 3 = 0

(a) The factors of 3x2 are 3x and x and these are placed
in brackets thus:

(3x )(x )

The factors of −4 are +1 and −4 or −1 and
+4, or −2 and +2. Remembering that the prod-
uct of the two inner terms added to the product
of the two outer terms must equal −11x , the only
combination to give this is +1 and −4, i.e.,

3x2 − 11x − 4= (3x + 1)(x − 4)

Thus (3x + 1)(x − 4)= 0 hence

either (3x + 1)= 0 i.e. x = −1
3

or (x − 4)= 0 i.e. x = 4

(b) 4x2 + 8x + 3 = (2x + 3)(2x + 1)

Thus (2x + 3)(2x + 1)= 0 hence

either (2x + 3)= 0 i.e. x =−3
2

or (2x + 1)= 0 i.e. x = −1
2

Problem 21. The roots of a quadratic equation
are 1

3 and −2. Determine the equation in x .

If
1

3
and −2 are the roots of a quadratic equation then,

(x − 1

3
)(x + 2)= 0

i.e. x2 + 2x − 1

3
x − 2

3
= 0

i.e. x2 + 5

3
x − 2

3
= 0

or 3x2 + 5x−2= 0

Problem 22. Solve 4x2 + 7x + 2 = 0 giving the
answer correct to 2 decimal places.
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From the quadratic formula if ax2 + bx + c = 0 then,

x = −b ± √
b2 − 4ac

2a

Hence if 4x2 + 7x + 2 = 0

then x = −7 ±
√

72 − 4(4)(2)

2(4)

= −7 ± √
17

8

= −7 ± 4.123

8

= −7 + 4.123

8
or

−7 − 4.123

8

i.e. x= −0.36 or −1.39

Now try the following Practice Exercise

Practice Exercise 4 Simultaneous and
quadratic equations (Answers on page 830)

In problems 1 to 3, solve the simultaneous equa-
tions

1. 8x − 3y = 51

3x + 4y = 14

2. 5a = 1 − 3b

2b + a + 4 = 0

3.
x

5
+ 2y

3
= 49

15

3x

7
− y

2
+ 5

7
= 0

4. Solve the following quadratic equations by
factorisation:

(a) x2 + 4x − 32 = 0

(b) 8x2 + 2x − 15 = 0

5. Determine the quadratic equation in x whose
roots are 2 and −5

6. Solve the following quadratic equations, cor-
rect to 3 decimal places:

(a) 2x2 + 5x − 4 = 0

(b) 4t2 − 11t + 3 = 0

1.4 Polynomial division

Before looking at long division in algebra let us revise
long division with numbers (we may have forgotten,
since calculators do the job for us!).

For example,
208

16
is achieved as follows:

13
——–

16
)

208
16

48
48
—· ·
—

(1) 16 divided into 2 won’t go

(2) 16 divided into 20 goes 1

(3) Put 1 above the zero

(4) Multiply 16 by 1 giving 16

(5) Subtract 16 from 20 giving 4

(6) Bring down the 8

(7) 16 divided into 48 goes 3 times

(8) Put the 3 above the 8

(9) 3 × 16 = 48

(10) 48 − 48 = 0

Hence
208

16
= 13 exactly

Similarly,
172

15
is laid out as follows:

11
——–

15
)

172
15

22
15
—

7
—

Hence
172

15
= 11 remainder 7 or 11 + 7

15
= 11

7
15

Below are some examples of division in algebra, which
in some respects is similar to long division with num-
bers.
(Note that a polynomial is an expression of the form

f (x)= a + bx + cx2 + dx3 + ·· ·
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and polynomial division is sometimes required when
resolving into partial fractions – see Chapter 2.)

Problem 23. Divide 2x2 + x − 3 by x − 1

2x2 + x − 3 is called the dividend and x − 1 the divi-
sor. The usual layout is shown below with the dividend
and divisor both arranged in descending powers of the
symbols.

2x + 3
——————–

x − 1
)

2x2 + x − 3
2x2 − 2x

3x − 3
3x − 3
———· ·
———

Dividing the first term of the dividend by the first term

of the divisor, i.e.
2x2

x
gives 2x , which is put above

the first term of the dividend as shown. The divisor
is then multiplied by 2x , i.e. 2x(x −1)= 2x2 −2x ,
which is placed under the dividend as shown. Subtract-
ing gives 3x −3. The process is then repeated, i.e. the
first term of the divisor, x , is divided into 3x , giving
+3, which is placed above the dividend as shown. Then
3(x −1)=3x −3, which is placed under the 3x −3. The
remainder, on subtraction, is zero, which completes the
process.

Thus (2x2 + x −3) ÷ (x − 1) = (2x + 3)

[A check can be made on this answer by multiplying
(2x + 3) by (x − 1) which equals 2x2 + x − 3.]

Problem 24. Divide 3x3 + x2 + 3x + 5 by x + 1

(1) (4) (7)

3x2 − 2x + 5
—————————

x + 1
)

3x3 + x2 + 3x + 5
3x3 + 3x2

−2x2 + 3x + 5
−2x2 − 2x
————–

5x + 5
5x + 5
———

· ·
———

(1) x into 3x3 goes 3x2. Put 3x2 above 3x3

(2) 3x2(x + 1)= 3x3 + 3x2

(3) Subtract

(4) x into −2x2 goes −2x . Put −2x above the
dividend

(5) −2x(x + 1)= −2x2 − 2x

(6) Subtract

(7) x into 5x goes 5. Put 5 above the dividend

(8) 5(x + 1)= 5x + 5

(9) Subtract

Thus 3x3 + x2 + 3x + 5

x + 1
= 3x2 − 2x + 5

Problem 25. Simplify
x3 + y3

x + y

(1) (4) (7)

x2 − xy + y2
—————————–

x + y
)

x3 + 0 + 0 + y3

x3 + x2 y

− x2y + y3

− x2y − xy2

———————
xy2 + y3

xy2 + y3

———–· ·
———–

(1) x into x3 goes x2. Put x2 above x3 of dividend

(2) x2(x + y)= x3 + x2y

(3) Subtract

(4) x into −x2y goes −xy. Put −xy above dividend

(5) −xy(x + y)= −x2y − xy2

(6) Subtract

(7) x into xy2 goes y2. Put y2 above dividend

(8) y2(x + y)= xy2 + y3

(9) Subtract

Thus

x3 + y3

x + y
= x2 − x y + y2


