

JOHN BIRD SEVENTH EDITION

SI UNITS USED

Why is knowledge of mathematics important in engineering?

A career in any engineering or scientific field will require both basic and advanced mathematics. Without mathematics to determine principles, calculate dimensions and limits, explore variations, prove concepts, and so on, there would be no mobile telephones, televisions, stereo systems, video games, microwave ovens, computers, or virtually anything electronic. There would be no bridges, tunnels, roads, skyscrapers, automobiles, ships, planes, rockets or most things mechanical. There would be no metals beyond the common ones, such as iron and copper, no plastics, no synthetics. In fact, society would most certainly be less advanced without the use of mathematics throughout the centuries and into the future.

Electrical engineers require mathematics to design, develop, test, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, military, or scientific use.

Mechanical engineers require mathematics to perform engineering duties in planning and designing tools, engines, machines, and other mechanically functioning equipment; they oversee installation, operation, maintenance, and repair of such equipment as centralised heat, gas, water, and steam systems.

Aerospace engineers require mathematics to perform a variety of engineering work in designing, constructing, and testing aircraft, missiles, and spacecraft; they conduct basic and applied research to evaluate adaptability of materials and equipment to aircraft design and manufacture and recommend improvements in testing equipment and techniques.

Nuclear engineers require mathematics to conduct research on nuclear engineering problems or apply prin-

ciples and theory of nuclear science to problems concerned with release, control, and utilisation of nuclear energy and nuclear waste disposal.

Petroleum engineers require mathematics to devise methods to improve oil and gas well production and determine the need for new or modified tool designs; they oversee drilling and offer technical advice to achieve economical and satisfactory progress.

Industrial engineers require mathematics to design, develop, test, and evaluate integrated systems for managing industrial production processes, including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production co-ordination.

Environmental engineers require mathematics to design, plan, or perform engineering duties in the prevention, control, and remediation of environmental health hazards, using various engineering disciplines; their work may include waste treatment, site remediation, or pollution control technology.

Civil engineers require mathematics in all levels in civil engineering – structural engineering, hydraulics and geotechnical engineering are all fields that employ mathematical tools such as differential equations, tensor analysis, field theory, numerical methods and operations research.

Knowledge of mathematics is therefore needed by each of the engineering disciplines listed above.

It is intended that this text – *Higher Engineering Mathematics* – will provide a step-by-step approach to learning fundamental mathematics needed for your engineering studies. To Sue

Higher Engineering Mathematics

Seventh Edition

John Bird, BSc (Hons), CMath, CEng, CSci, FITE, FIMA, FCollT

Seventh edition published 2014 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

and by Routledge 711 Third Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2014 John Bird

The right of John Bird to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Elsevier 1993 Sixth edition published by Newnes 2010

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data Bird, J. O. Higher engineering mathematics / John Bird, BSc (Hons), CMath, CEng, CSci, FITE, FIMA, FCoIIT. – Seventh edition. pages cm Includes index. 1. Engineering mathematics. I. Title. TA330.B52 2014 620.001'51–dc23 2013027617

ISBN: 978-0-415-66282-6 (pbk) ISBN: 978-0-315-85882-1 (ebk)

Typeset in Times by Servis Filmsetting Ltd, Stockport, Cheshire

Contents

Pr	eface		xiii
Sy	llabus g	uidance	XV
S	ection	A Number and algebra	1
1	Algebr	. a	3
	1.1	Introduction	3
	1.2	Revision of basic laws	3
	1.3	Revision of equations	5
	1.4	Polynomial division	8
	1.5	The factor theorem	10
	1.6	The remainder theorem	12
2	Partial	fractions	15
	2.1	Introduction to partial fractions	15
	2.2	Worked problems on partial fractions with linear factors	16
	2.3	Worked problems on partial fractions with repeated linear factors	18
	2.4	Worked problems on partial fractions with quadratic factors	20
3	Logari	ithms	22
	3.1	Introduction to logarithms	22
	3.2	Laws of logarithms	24
	3.3	Indicial equations	27
	3.4	Graphs of logarithmic functions	28
4	Expon	ential functions	29
	4.1	Introduction to exponential functions	29
	4.2	The power series for e^x	30
	4.3	Graphs of exponential functions	32
	4.4	Napierian logarithms	33
	4.5	Laws of growth and decay	36
	4.6	Reduction of exponential laws to	
		linear form	40
5	Inequa	lities	43
	5.1	Introduction to inequalities	43
	5.2	Simple inequalities	44
	5.3	Inequalities involving a modulus	44
	5.4	Inequalities involving quotients	45
	5.5	Inequalities involving square functions	46
	5.6	Quadratic inequalities	47

Revision Test 1			49
6	Arithn	netic and geometric progressions	50
	6.1	Arithmetic progressions	50
	6.2	Worked problems on arithmetic	
		progressions	51
	6.3	Further worked problems on arithmetic	
		progressions	52
	6.4	Geometric progressions	53
	6.5	Worked problems on geometric	
		progressions	54
	6.6	Further worked problems on geometric	
		progressions	55
7	The bi	nomial series	58
	7.1	Pascal's triangle	58
	7.2	The binomial series	60
	7.3	Worked problems on the binomial series	60
	7.4	Further worked problems on the binomial	
		series	62
	7.5	Practical problems involving the binomial	
		theorem	64
8	Maclau	ırin's series	68
	8.1	Introduction	69
	8.2	Derivation of Maclaurin's theorem	69
	8.3	Conditions of Maclaurin's series	70
	8.4	Worked problems on Maclaurin's series	70
	8.5	Numerical integration using Maclaurin's	
		series	73
	8.6	Limiting values	75
]	Revision	Test 2	78
9	Solving	equations by iterative methods	79
	9.1	Introduction to iterative methods	79
	9.2	The bisection method	80
	9.3	An algebraic method of successive	
		approximations	83
	9.4	The Newton-Raphson method	86
10	Binary	, octal and hexadecimal numbers	90
	10.1	Introduction	90

10.2 Binary numbers

Octal numbers

10.4 Hexadecimal numbers

10.3

91

93

95

vi Contents

11	Boolear	algebra and logic circuits	99
	11.1	Boolean algebra and switching circuits	100
	11.2	Simplifying Boolean expressions	104
	11.3	Laws and rules of Boolean algebra	104
	11.4	De Morgan's laws	106
	11.5	Karnaugh maps	107
	11.6	Logic circuits	111
	11.7	Universal logic gates	115

Revision Test 3

118

17

Section B Geometry and trigonometry 119

12 Introduction to trigonometry			
12.1 Trigonometry			
12.2	12.2 The theorem of Pythagoras		
12.3 Trigonometric ratios of acute angles			
12.4	12.4 Evaluating trigonometric ratios		
12.5	Solution of right-angled triangles	129	
12.6	Angles of elevation and depression	131	
12.7	Sine and cosine rules	132	
12.8	Area of any triangle	133	
12.9	Worked problems on the solution of		
	triangles and finding their areas	133	
12.10	Further worked problems on solving		
	triangles and finding their areas	134	
12.11	Practical situations involving		
	trigonometry	136	
12.12	Further practical situations involving		
	trigonometry	138	
13 Cartesi	an and polar co-ordinates	141	
13.1	Introduction	142	
13.2	Changing from Cartesian into polar		
	co-ordinates	142	
13.3	Changing from polar into Cartesian		
	co-ordinates	144	
13.4	Use of Pol/Rec functions on calculators	145	
14 The cir	ale and its properties	147	
14 The ch 14 1	Introduction	147	
14.1	Properties of circles	147	
14.2	Radians and degrees	149	
14.5	Arc length and area of circles and sectors	150	
14.4	The equation of a circle	153	
14.6	Linear and angular velocity	154	
14.0	Centrinetal force	156	
17./		150	
Revision	Test 4	158	

15 Trigonometric waveforms 160 15.1 Graphs of trigonometric functions 160 15.2 Angles of any magnitude 161 15.3 The production of a sine and cosine wave 164 15.4 Sine and cosine curves 165 15.5 Sinusoidal form $A \sin(\omega t \pm \alpha)$ 169 15.6 Harmonic synthesis with complex waveforms 172

16 Hyperbolic functions

Hypert	oolic functions	178
16.1	Introduction to hyperbolic functions	178
16.2	Graphs of hyperbolic functions	180
16.3	Hyperbolic identities	182
16.4	Solving equations involving hyperbolic functions	184
16.5	Series expansions for $\cosh x$ and $\sinh x$	186
Trigon	matric identities and equations	188
17 1	Trigonometric identities	100
17.1	Worked problems on trigonometric	100
	identities	189
17.3	Trigonometric equations	190
17.4	Worked problems (i) on trigonometric	101
		191
17.5	Worked problems (11) on trigonometric equations	192

	1	
17.5	Worked problems (ii) on trigonometric	
	equations	192
17.6	Worked problems (iii) on trigonometric	
	equations	193
17.7	Worked problems (iv) on trigonometric	
	equations	193

196
196
196
197

19 Compound angles 200 19.1 Compound angle formulae 200 19.2 Conversion of $a \sin \omega t + b \cos \omega t$ into $R\sin(\omega t + \alpha)$ 202 206 19.3 Double angles 19.4 Changing products of sines and cosines 208 into sums or differences 19.5 Changing sums or differences of sines and cosines into products 209 210 19.6 Power waveforms in a.c. circuits

Revision Test 5

214

Contents **vii**

Section C Graphs

20	0 Functions and their curves		
	20.1 Standard curves		217
	20.2	Simple transformations	220
	20.3	Periodic functions	225
	20.4	Continuous and discontinuous functions	225
	20.5 Even and odd functions		226
	20.6 Inverse functions		227
	20.7 Asymptotes		229
	20.8 Brief guide to curve sketching		235
	20.9	Worked problems on curve sketching	236
21	Irregula	ar areas, volumes and mean values of	
	wavefor	rms	239
	21.1 Areas of irregular figures		239
	21.2	Volumes of irregular solids	242

21.3 The mean or average value of a waveform 243

Fest 6	248
	Test 6

S	ection	D Complex numbers	249
22	Comple	ex numbers	251
	22.1	Cartesian complex numbers	252
	22.2	The Argand diagram	253
	22.3	Addition and subtraction of complex	
		numbers	253
	22.4	Multiplication and division of complex	
		numbers	254
	22.5	Complex equations	256
	22.6	The polar form of a complex number	257
	22.7	Multiplication and division in polar form	259
	22.8	Applications of complex numbers	260
23	De Moi	ivre's theorem	264
	23.1	Introduction	265
	23.2	Powers of complex numbers	265
	23.3	Roots of complex numbers	266
	23.4	The exponential form of a complex	
		number	268
	23.5	Introduction to locus problems	269
S	ection	E Matrices and determinants	273
24	The the	eory of matrices and determinants	275
	24.1	Matrix notation	275
	24.2	Addition, subtraction and multiplication	276
		of matrices	210

24.3 The unit matrix

24.4 The determinant of a 2 by 2 matrix

24.5 24.6 24.7	The inverse or reciprocal of a 2 by 2 matrix The determinant of a 3 by 3 matrix The inverse or reciprocal of a 3 by 3 matrix	x 280 281 x 283
25 Applic	ations of matrices and determinants	285
25.1	Solution of simultaneous equations by	
	matrices	286
25.2	Solution of simultaneous equations by	
	determinants	288
25.3	Solution of simultaneous equations using	
	Cramer's rule	291
25.4	Solution of simultaneous equations using	
	the Gaussian elimination method	292
25.5	Eigenvalues and eigenvectors	294
Revision	Test 7	300

```
301
```

26	Vectors	

Section F

	303
Introduction	303
Scalars and vectors	303
Drawing a vector	304
Addition of vectors by drawing	305
Resolving vectors into horizontal and	
vertical components	307
Addition of vectors by calculation	308
Vector subtraction	312
Relative velocity	314
i, j and k notation	315
	Introduction Scalars and vectors Drawing a vector Addition of vectors by drawing Resolving vectors into horizontal and vertical components Addition of vectors by calculation Vector subtraction Relative velocity i, j and k notation

Vector geometry

27	Method	ls of adding alternating waveforms	317
	27.1	Combination of two periodic functions	317
	27.2	Plotting periodic functions	318
	27.3	Determining resultant phasors by drawing	319
	27.4	Determining resultant phasors by the sine and cosine rules	321
	27.5	Determining resultant phasors by	
		horizontal and vertical components	322
	27.6	Determining resultant phasors by complex	κ.
		numbers	324
28	Scalar	and vector products	328
	28.1	The unit triad	328
	28.2	The scalar product of two vectors	329
	28.3	Vector products	333
	28.4	Vector equation of a line	337
F	Revision	Test 8	339

viii Contents

Section	G Differential calculus	341
29 Metho	ls of differentiation	343
29.1	Introduction to calculus	343
29.2	The gradient of a curve	343
29.3	Differentiation from first principles	344
29.4	Differentiation of common functions	34
29.5	Differentiation of a product	348
29.6	Differentiation of a quotient	350
29.7	Function of a function	35
29.8	Successive differentiation	353
30 Some a	pplications of differentiation	35
30.1	Rates of change	35
30.2	Velocity and acceleration	35
30.3	Turning points	36
30.4	Practical problems involving maximum	
	and minimum values	36
30.5	Points of inflexion	36
30.6	Tangents and normals	36
30.7	Small changes	37
31 Differe	ntiation of parametric equations	37
31.1	Introduction to parametric equations	37
31.2	Some common parametric equations	37
31.3	Differentiation in parameters	37
31.4	Further worked problems on differentiation of parametric equations	37
32 Differe	ntiation of implicit functions	37
32.1	Implicit functions	37
32.2	Differentiating implicit functions	37
32.3	Differentiating implicit functions	
52.5	containing products and quotients	38
32.4	Further implicit differentiation	38
33 Logari	thmic differentiation	38
33.1	Introduction to logarithmic differentiation	38
33.2	Laws of logarithms	38
33.3	Differentiation of logarithmic functions	38
33.4	Differentiation of further logarithmic	20
33.5	Differentiation of $[f(x)]^x$	38
Revision	Test 9	391
34 Differe	ntiation of hyperbolic functions	39
34.1	Standard differential coefficients of	
	hyperbolic functions	39
34.2	Further worked problems on	
	differentiation of hyperbolic functions	39
35 Differe	ntiation of inverse trigonometric and	
hyperb	olic functions	39
35.1	Inverse functions	- 39

	35.2	Differentiation of inverse trigonometric	
		functions	397
	35.3	Logarithmic forms of the inverse	
		hyperbolic functions	400
	35.4	Differentiation of inverse hyperbolic	
		functions	402
36	Partial	differentiation	406
	36.1	Introduction to partial derivatives	406
	36.2	First-order partial derivatives	406
	36.3	Second-order partial derivatives	409
37	Total di	ifferential, rates of change and small	
	change	S	412
	37.1	Total differential	412
	37.2	Rates of change	413
	37.3	Small changes	416
38	Maxim	a, minima and saddle points for functions	
	of two y	variables	419
	38.1	Functions of two independent variables	419
	38.2	Maxima, minima and saddle points	420
	38.3	Procedure to determine maxima, minima	
		and saddle points for functions of two	
		variables	421
	38.4	Worked problems on maxima, minima	
		and saddle points for functions of two	
		variables	421
	38.5	Further worked problems on maxima,	
		minima and saddle points for functions of	
		two variables	424

```
429
```

Section	H Integral calculus	431
39 Standa	rd integration	433
39.1	The process of integration	433
39.2	The general solution of integrals of the	
	form ax^n	434
39.3	Standard integrals	434
39.4	Definite integrals	437
40 Some a	pplications of integration	440
40.1	Introduction	441
40.2	Areas under and between curves	441
40.3	Mean and rms values	442
40.4	Volumes of solids of revolution	443
40.5	Centroids	445
40.6	Theorem of Pappus	447
40.7	Second moments of area of regular	
	sections	449
41 Integra	ntion using algebraic substitutions	457
41.1	Introduction	457

Contents **ix**

41.2	Algebraic substitutions	457
41.3	Worked problems on integration using	
	algebraic substitutions	458
41.4	Further worked problems on integration	
	using algebraic substitutions	459
41.5	Change of limits	460

Revision Test 11

42	Integra	tion using trigonometric and hyperbolic	
	substitu	utions	463
	42.1	Introduction	463
	42.2	Worked problems on integration of $\sin^2 x$,	
		$\cos^2 x$, $\tan^2 x$ and $\cot^2 x$	463
	42.3	Worked problems on integration of powers	5
		of sines and cosines	466
	42.4	Worked problems on integration of	
		products of sines and cosines	467
	42.5	Worked problems on integration using the	
		$\sin \theta$ substitution	468
	42.6	Worked problems on integration using	
		tan θ substitution	469
	42.7	Worked problems on integration using the	
		$\sinh \theta$ substitution	470
	42.8	Worked problems on integration using the	
		$\cosh \theta$ substitution	472
43	Integra	tion using partial fractions	474
	43.1	Introduction	474
	43.2	Worked problems on integration using	
		partial fractions with linear factors	474
	43.3	Worked problems on integration using	
		partial fractions with repeated linear	
		factors	476
	43.4	Worked problems on integration using	
		partial fractions with quadratic factors	477
		θ	
44	The $t =$	$\tan \frac{1}{2}$ substitution	479
	44.1	Introduction	479
	44.2	Worked problems on the $t = \tan \frac{\theta}{-1}$	
		substitution 2	480
	44.2	θ	400
	44.3	Further worked problems on the $t = \tan \frac{1}{2}$	
		substitution	481
р	ovision	Tost 12	181
r	CV151011	1031 12	-10-1
45	Integra	tion by parts	485
	45.1	Introduction	485
	45.2	Worked problems on integration by parts	485
	45.3	Further worked problems on integration	
		by parts	487
46	Reduct	ion formulae	491
	46.1	Introduction	491

	46.2	Using reduction formulae for integrals of the form $\int u^{n} e^{x} du$	401
	16.0	$\lim_{x \to \infty} \int x^{n} e^{x} dx$	491
	46.3	Using reduction formulae for integrals of	
		the form $\int x^n \cos x dx$ and $\int x^n \sin x dx$	492
	46.4	Using reduction formulae for integrals of	
		the form $\int \sin^n x dx$ and $\int \cos^n x dx$	495
	46.5	Further reduction formulae	497
47	Double	and triple integrals	500
	47.1	Double integrals	500
	47.2	Triple integrals	502
48	Numer	ical integration	505
	48.1	Introduction	505
	48.2	The trapezoidal rule	505
	48.3	The mid-ordinate rule	508
	48.4	Simpson's rule	509
R	evision	Test 13	514

ontion I	0 0 0 0 1		0.0110	TIONG
		2	. cyuu	

49	Solution	n of first-order differential equations by		
	separation of variables			
	49.1 Family of curves			
	49.2	Differential equations	518	
	49.3	The solution of equations of the form		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$	519	
	49.4	The solution of equations of the form		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = f(y)$	520	
	49.5	The solution of equations of the form		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x) \cdot f(y)$	522	
50	Homog	eneous first-order differential equations	526	
	50.1	Introduction	526	
	50.2	Procedure to solve differential equations		
		of the form $P \frac{dy}{dx} = Q$	526	
	50.3	Worked problems on homogeneous		
		first-order differential equations	527	
	50.4	Further worked problems on homogeneous		
		first-order differential equations	528	
51	Linear	first-order differential equations	530	
	51.1	Introduction	530	
	51.2	Procedure to solve differential equations		
		of the form $\frac{dy}{dx} + Py = Q$	531	
	51.3	Worked problems on linear first-order		
		differential equations	531	
	51.4	Further worked problems on linear		
		first-order differential equations	532	

x Contents

52 Numer	ical methods for first-order differential	l
equations		
52.1	Introduction	535
52.2	Euler's method	536
52.3	Worked problems on Euler's method	537
52.4	The Euler-Cauchy method	541
52.5	The Runge–Kutta method	546
Revision	Test 14	552

53	Second	-order differential equations of the form	
	$a\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} +$	$b\frac{\mathrm{d}y}{\mathrm{d}x} + cy = 0$	553
	53.1	Introduction	553
	53.2	Procedure to solve differential equations	
		of the form $a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = 0$	554
	53.3	Worked problems on differential equations	
		of the form $a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = 0$	554
	53.4	Further worked problems on practical	
		differential equations of the form	
		$a\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + b\frac{\mathrm{d}y}{\mathrm{d}x} + cy = 0$	556
54	Second	-order differential equations of the form	

54	Second	-order differential equations of the form	
	$a\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} +$	$b\frac{\mathrm{d}y}{\mathrm{d}x} + cy = f(x)$	560
	54.1	Complementary function and particular integral	561
	54.2	Procedure to solve differential equations	
		of the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$	562
	54.3	Worked problems on differential equations $d^2 $	
		of the form $a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = f(x)$	
		where $f(x)$ is a constant or polynomial	562
	54.4	Worked problems on differential equations $\frac{1}{2}$	
		of the form $a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = f(x)$	
		where $f(x)$ is an exponential function	563
	54.5	Worked problems on differential equations	
		of the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$	
		where $f(x)$ is a sine or cosine function	565
	54.6	Worked problems on differential equations $d^2 $	
		of the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$	
		where $f(x)$ is a sum or a product	567
55	Power s	series methods of solving ordinary	
	differer	ntial equations	570
	55.1	Introduction	570
	55.2	Higher order differential coefficients as	
		series	571

55.3	Leibniz's theorem	572
55.4	Power series solution by the	
	Leibniz-Maclaurin method	575
55.5	Power series solution by the Frobenius	
	method	577
55.6	Bessel's equation and Bessel's functions	584
55.7	Legendre's equation and Legendre	
	polynomials	589
56 An intr	oduction to partial differential equations	594
56.1	Introduction	595
56.2	Partial integration	595
56.3	Solution of partial differential equations	
	by direct partial integration	595
56.4	Some important engineering partial	
	differential equations	597
56.5	Separating the variables	598
56.6	The wave equation	598
56.7	The heat conduction equation	602
56.8	Laplace's equation	604

Revision Test 15

608

Section J Statistics and probability 609

57	Present	ation of statistical data	611
	57.1	Some statistical terminology	612
	57.2	Presentation of ungrouped data	613
	57.3	Presentation of grouped data	616
58	Mean,	median, mode and standard deviation	623
	58.1	Measures of central tendency	623
	58.2	Mean, median and mode for discrete data	624
	58.3	Mean, median and mode for grouped data	625
	58.4	Standard deviation	626
	58.5	Quartiles, deciles and percentiles	628
59	Probab	ility	631
	59.1	Introduction to probability	632
	59.2	Laws of probability	632
	59.3	Worked problems on probability	633
	59.4	Further worked problems on probability	634
	59.5	Permutations and combinations	637
R	Revision	Test 16	639
60	The bir	nomial and Poisson distributions	641
	60.1	The binomial distribution	641
	60.2	The Poisson distribution	644
61	The not	rmal distribution	648
	61.1	Introduction to the normal distribution	648
	61.2	Testing for a normal distribution	653

Contents **xi**

62	Linear	correlation	656
	62.1	Introduction to linear correlation	656
	62.2	The product-moment formula for	
		determining the linear correlation	
		coefficient	656
	62.3	The significance of a coefficient of	
		correlation	657
	62.4	Worked problems on linear correlation	657
63	Linear	regression	661
	63.1	Introduction to linear regression	661
	63.2	The least-squares regression lines	661
	63.3	Worked problems on linear regression	662
R	Revision	Test 17	667
64	Samuli	ng and estimation theories	668
	64 1	Introduction	668
	64.2	Sampling distributions	668
	64.3	The sampling distribution of the means	669
	64.4	The estimation of population parameters	007
	0	based on a large sample size	672
	64.5	Estimating the mean of a population based	1
		on a small sample size	677
65	Signific	cance testing	681
	65.1	Hypotheses	681
	65.2	Type I and type II errors	682
	65.3	Significance tests for population means	688
	65.4	Comparing two sample means	693
66	Chi-squ	uare and distribution-free tests	698
	66.1	Chi-square values	698
	66.2	Fitting data to theoretical distributions	700
	66.3	Introduction to distribution-free tests	706
	66.4	The sign test	706
	66.5	Wilcoxon signed-rank test	709
	66.6	The Mann–Whitney test	713
R	Revision	Test 18	720

	Section K	Laplace transforms
6'	7 Introductio	n to Laplace transforms

67.1	Introduction	726
67.2	Definition of a Laplace transform	726
67.3	Linearity property of the Laplace	
	transform	726
67.4	Laplace transforms of elementary	
	functions	726
67.5	Worked problems on standard Laplace	
	transforms	727

C	ection	L Fourier series	763
R	Revision	Test 19	762
		transforms	757
	72.3	Worked problems on solving simultaneous differential equations by using Laplace	
		differential equations using Laplace transforms	756
	72.2	Procedure to solve simultaneous	
	72.1	Introduction	756
	equatio	ons using Laplace transforms	756
72	The sol	ution of simultaneous differential	
	/1.3	equations using Laplace transforms	752
	71 3	by using Laplace transforms Worked problems on solving differential	/31
	71.2	Procedure to solve differential equations	751
	71.1	Introduction	751
	Laplac	e transforms	751
71	The sol	ution of differential equations using	
		functions	749
	70.4	Inverse Laplace transforms of Heaviside	
	70.3	Laplace transform of $H(t-c)$. $f(t-c)$	748
	70.2	Laplace transform of $H(t-c)$	748
70	The La 70.1	place transform of the Heaviside function Heaviside unit step function	74 4 744
	69.4	Poles and zeros	742
	69.3	Inverse Laplace transforms using partial fractions	740
		functions	737
	69.2	Inverse Laplace transforms of simple	
69	69.1	Laplace transforms Definition of the inverse Laplace transform	737 1 737
~	-	.	
	68.4	The initial and final value theorems	735
	68.3	The Laplace transforms of derivatives	733
	68.2	Laplace transforms of the form $e^{at} f(t)$	731
	00.1	The Laplace transform of $e^{it} f(t)$	151
	08.1	The Laplace transform of $e^{at} f(t)$	1.

73	Fourier	series for periodic functions of	
	period 2π		765
	73.1	Introduction	766
	73.2	Periodic functions	766
	73.3	Fourier series	766
	73.4	Worked problems on Fourier series of	
		periodic functions of period 2π	767

xii Contents

74 Fourier	series for a non-periodic function over		
range 2	range 2π		
74.1	Expansion of non-periodic functions	772	
74.2	Worked problems on Fourier series of		70
	non-periodic functions over a range of 2π	773	10
75 Even ar	nd odd functions and half-range		
Fourier	· series	778	
75.1	Even and odd functions	778	
75.2	Fourier cosine and Fourier sine series	778	
75.3	Half-range Fourier series	782	
76 Fourier	series over any range	785	
76.1	Expansion of a periodic function of		
	period L	785	
76.2	Half-range Fourier series for functions		
	defined over range L	789	E
77 A nume	erical method of harmonic analysis	791	Α
77.1	Introduction	791	Ir

77.2	Harmonic analysis on data given in tabular	r
	or graphical form	791
77.3	Complex waveform considerations	795
78 The con	nplex or exponential form of a	
Fourier	series	799
78.1	Introduction	799
78.2	Exponential or complex notation	799
78.3	The complex coefficients	800
78.4	Symmetry relationships	804
78.5	The frequency spectrum	807
78.6	Phasors	808
Revision	Test 20	813
Essential fo	ormulae	814
Answers to	Practise Exercises	830
Index		873

Preface

This seventh edition of *Higher Engineering Mathematics* covers essential mathematical material suitable for students studying Degrees, Foundation Degrees, and Higher National Certificate and Diploma courses in Engineering disciplines.

The text has been conveniently divided into the following **12 convenient categories**: number and algebra, geometry and trigonometry, graphs, complex numbers, matrices and determinants, vector geometry, differential calculus, integral calculus, differential equations, statistics and probability, Laplace transforms and Fourier series.

Increasingly, **difficulty in understanding algebra** is proving a problem for many students as they commence studying engineering courses. Inevitably there are a lot of formulae and calculations involved with engineering studies that require a sound grasp of algebra. On the website, available to all, is a document which offers **a quick revision of the main areas of algebra** essential for further study, i.e. basic algebra, simple equations, transposition of formulae, simultaneous equations and quadratic equations.

For this edition, **new material** has been added on loci, eigenvalues and eigenvectors, points of inflexion, double and triple integrals, permutations and combinations and Laplace transforms of the Heaviside function, together with material that was previously on the website, that is, inequalities, Boolean algebra and logic circuits, sampling and estimation theories, significance testing, and Chi square and distribution-free tests.

The **primary aim of the material in this text** is to provide the fundamental analytical and underpinning knowledge and techniques needed to successfully complete scientific and engineering principles modules of Degree, Foundation Degree and Higher National Engineering programmes. The material has been designed to enable students to use techniques learned for the analysis, modelling and solution of realistic engineering problems at Degree and Higher National level. It also aims to provide some of the more advanced knowledge required for those wishing to pursue careers in mechanical engineering, aeronautical engineering, electrical and electronic engineering, communications engineering, systems engineering and all variants of control engineering.

In *Higher Engineering Mathematics 7th Edition*, theory is introduced in each chapter by a full outline of essential definitions, formulae, laws, procedures, etc; **problem solving** is extensively used to establish and exemplify the theory. It is intended that readers will gain real understanding through seeing problems solved and then through solving similar problems themselves.

Access to **software packages** such as Maple, Mathematica and Derive, or a graphics calculator, will enhance understanding of some of the topics in this text.

Each topic considered in the text is presented in a way that assumes in the reader only knowledge attained in BTEC National Certificate/Diploma, or similar, in an Engineering discipline.

Higher Engineering Mathematics 7th Edition provides a follow-up to Engineering Mathematics 7th Edition.

This textbook contains some **1020 worked problems**, followed by over **1900 further problems** (**with answers**), arranged within **269 Practice Exercises**. Some **512 line diagrams** further enhance understanding.

Worked solutions to all 1900 of the further problems has been prepared and can be **accessed free by students and staff via the website** (see page xiv).

At the end of the text, a list of **Essential Formulae** is included for convenience of reference.

At intervals throughout the text are some **20 Revi**sion Tests to check understanding. For example, Revision Test 1 covers the material in Chapters 1 to 5, Revision Test 2 covers the material in Chapters 6 to 8, Revision Test 3 covers the material in Chapters 9 to 11, and so on. An Instructor's Manual, containing full solutions to the Revision Tests, is available free to lecturers/instructors via the website (see page xiv). 'Learning by example' is at the heart of *Higher* Engineering Mathematics 7th Edition.

> JOHN BIRD Royal Naval School of Marine Engineering, HMS Sultan, formerly University of Portsmouth and Highbury College, Portsmouth

John Bird is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently, he has combined freelance lecturing at the University of Portsmouth with examiner responsibilities for Advanced Mathematics with City and Guilds, and examining for International Baccalaureate Organisation. He is the author of over 125 textbooks on engineering and mathematics with worldwide sales of around one million copies. He is currently a Senior Training Provider at the Royal Naval School of Marine Engineering in the Defence College of Marine and Air Engineering at HMS *Sultan*, Gosport, Hampshire, UK.

Free Web downloads

The following support material is available from http://www.routledge.com/bird/

For Students:

- 1. Full solutions to all 1900 further questions contained in the 269 Practice Exercises
- 2. Revision of some important algebra topics
- 3. A list of Essential Formulae
- 4. Information on 31 Mathematicians/Engineers mentioned in the text

For Lecturers/Instructors:

- 1. Full solutions to all 1900 further questions contained in the 269 Practice Exercises
- 2. Revision of some important algebra topics
- Full solutions and marking scheme for each of the 20 Revision Tests; also, each test may be downloaded for distribution to students. In addition, solutions to the Revision Test given in the Revision of Algebra Topics is also included
- 4. A list of Essential Formulae
- 5. Information on 31 Mathematicians/Engineers mentioned in the text
- 6. All 512 illustrations used in the text may be downloaded for use in PowerPoint presentations

Syllabus guidance

This textbook is written for **undergraduate Engineering Degree and Foundation Degree courses**; however, it is also most appropriate for **BTEC levels 4 and 5 HNC/D studies in engineering** and three syllabuses are covered. The appropriate chapters for these three syllabuses are shown in the table below.

Chapter		Analytical Methods	Further Analytical	Advanced Mathematics
		for Engineers	Methods for Engineers	for Engineering
1.	Algebra	×	_	
2.	Partial fractions	×		
3.	Logarithms	×		
4.	Exponential functions	×		
5.	Inequalities			
6.	Arithmetic and geometric progressions	×		
7.	The binomial series	×		
8.	Maclaurin's series	×		
9.	Solving equations by iterative methods		×	
10.	Binary, octal and hexadecimal numbers		×	
11.	Boolean algebra and logic circuits		×	
12.	Introduction to trigonometry	×		
13.	Cartesian and polar co-ordinates	×		
14.	The circle and its properties	×		
15.	Trigonometric waveforms	×		
16.	Hyperbolic functions	×		
17.	Trigonometric identities and equations	×		
18.	The relationship between trigonometric and hyperbolic functions	×		
19.	Compound angles	×		
20.	Functions and their curves		×	
21.	Irregular areas, volumes and mean values of waveforms		×	
22.	Complex numbers		×	
23.	De Moivre's theorem		х	
24.	The theory of matrices and determinants		×	
25.	Applications of matrices and determinants		×	

(Continued)

xvi Syllabus Guidance

Chapter		Analytical Methods for Engineers	Further Analytical Methods for Engineers	Advanced Mathematics for Engineering
26.	Vectors		×	
27.	Methods of adding alternating waveforms		х	
28.	Scalar and vector products		х	
29.	Methods of differentiation	×		
30.	Some applications of differentiation	×		
31.	Differentiation of parametric equations			
32.	Differentiation of implicit functions	×		
33.	Logarithmic differentiation	×		
34.	Differentiation of hyperbolic functions	×		
35.	Differentiation of inverse trigonometric and hyperbolic functions	×		
36.	Partial differentiation			×
37.	Total differential, rates of change and small changes			×
38.	Maxima, minima and saddle points for functions of two variables			×
39.	Standard integration	×		
40.	Some applications of integration	×		
41.	Integration using algebraic substitutions	×		
42.	Integration using trigonometric and hyperbolic substitutions	×		
43.	Integration using partial fractions	×		
44.	The $t = \tan \theta / 2$ substitution			
45.	Integration by parts	×		
46.	Reduction formulae	×		
47.	Double and triple integrals			
48.	Numerical integration		×	
49.	Solution of first-order differential equations by separation of variables		×	
50.	Homogeneous first-order differential equations			
51.	Linear first-order differential equations		×	
52.	Numerical methods for first-order differential equations		×	×
53.	Second-order differential equations of the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$		×	

(Continued)

Chapter		Analytical Methods for Engineers	Further Analytical Methods for Engineers	Advanced Mathematics for Engineering
54.	Second-order differential equations of the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$		×	
55.	Power series methods of solving ordinary differential equations			х
56.	An introduction to partial differential equations			х
57.	Presentation of statistical data	×		
58.	Mean, median, mode and standard deviation	×		
59.	Probability	×		
60.	The binomial and Poisson distributions	×		
61.	The normal distribution	×		
62.	Linear correlation	×		
63.	Linear regression	×		
64.	Sampling and estimation theories	×		
65.	Significance testing	×		
66.	Chi-square and distribution-free tests	×		
67.	Introduction to Laplace transforms			х
68.	Properties of Laplace transforms			х
69.	Inverse Laplace transforms			х
70.	The Laplace transform of the Heaviside function			
71.	Solution of differential equations using Laplace transforms			
72.	The solution of simultaneous differential equations using Laplace transforms			×
73.	Fourier series for periodic functions of period 2π			×
74.	Fourier series for non-periodic functions over range 2π			×
75.	Even and odd functions and half-range Fourier series			х
76.	Fourier series over any range			×
77.	A numerical method of harmonic analysis			×
78.	The complex or exponential form of a Fourier series			×

This page intentionally left blank

Number and algebra

This page intentionally left blank

Chapter 1

Algebra

Why it is important to understand: Algebra, polynomial division and the factor and remainder theorems

It is probably true to say that there is no branch of engineering, physics, economics, chemistry or computer science which does not require the understanding of the basic laws of algebra, the laws of indices, the manipulation of brackets, the ability to factorise and the laws of precedence. This then leads to the ability to solve simple, simultaneous and quadratic equations which occur so often. The study of algebra also revolves around using and manipulating polynomials. Polynomials are used in engineering, computer programming, software engineering, in management, and in business. Mathematicians, statisticians and engineers of all sciences employ the use of polynomials to solve problems; among them are aerospace engineers, chemical engineers, civil engineers, electrical engineers, environmental engineers, industrial engineers, materials engineers, mechanical engineers and nuclear engineers. The factor and remainder theorems are also employed in engineering software and electronic mathematical applications, through which polynomials of higher degrees and longer arithmetic structures are divided without any complexity. The study of algebra, equations, polynomial division and the factor and remainder theorems is therefore of some considerable importance in engineering.

At the end of this chapter, you should be able to:

- understand and apply the laws of indices
- understand brackets, factorisation and precedence
- transpose formulae and solve simple, simultaneous and quadratic equations
- divide algebraic expressions using polynomial division
- factorise expressions using the factor theorem
- use the remainder theorem to factorise algebraic expressions

1.1 Introduction

In this chapter, polynomial division and the factor and remainder theorems are explained (in Sections 1.4 to 1.6). However, before this, some essential algebra revision on basic laws and equations is included. For further algebra revision, go to the website: www.routledge.com/cw/bird

1.2 Revision of basic laws

(a) Basic operations and laws of indices The laws of indices are:

(i)
$$a^m \times a^n = a^{m+n}$$
 (ii) $\frac{a^m}{a^n} = a^{m-n}$
(iii) $(a^m)^n = a^{m \times n}$ (iv) $a^{\frac{m}{n}} = \sqrt[n]{a^m}$
(v) $a^{-n} = \frac{1}{a^n}$ (vi) $a^0 = 1$

Higher Engineering Mathematics. 978-0-415-66282-6, © 2014 John Bird. Published by Taylor & Francis. All rights reserved.

4 Higher Engineering Mathematics

Problem 1. Evaluate $4a^{2}bc^{3}-2ac$ when a=2, $b = \frac{1}{2}$ and $c = 1\frac{1}{2}$ $4a^{2}bc^{3}-2ac = 4(2)^{2}\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)^{3}-2(2)\left(\frac{3}{2}\right)$ $= \frac{4 \times 2 \times 2 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2} - \frac{12}{2}$

$$= 27 - 6 = 21$$

Problem 2. Multiply 3x + 2y by x - y

$$3x + 2y$$

$$x - y$$
Multiply by $x \rightarrow 3x^2 + 2xy$
Multiply by $-y \rightarrow -3xy - 2y^2$
Adding gives: $3x^2 - xy - 2y^2$

Alternatively,

$$(3x+2y)(x-y) = 3x^2 - 3xy + 2xy - 2y^2$$
$$= 3x^2 - xy - 2y^2$$

Problem 3. Simplify $\frac{a^3b^2c^4}{abc^{-2}}$ and evaluate when $a = 3, b = \frac{1}{8}$ and c = 2

$$\frac{a^3b^2c^4}{abc^{-2}} = a^{3-1}b^{2-1}c^{4-(-2)} = a^2bc^6$$

When $a = 3, b = \frac{1}{8}$ and c = 2,

$$a^{2}bc^{6} = (3)^{2} \left(\frac{1}{8}\right)(2)^{6} = (9) \left(\frac{1}{8}\right)(64) = 72$$

Problem 4. Simplify
$$\frac{x^2y^3 + xy^2}{xy}$$

$$\frac{x^2y^3 + xy^2}{xy} = \frac{x^2y^3}{xy} + \frac{xy^2}{xy}$$
$$= x^{2-1}y^{3-1} + x^{1-1}y^{2-1}$$
$$= xy^2 + y \text{ or } y(xy+1)$$

Problem 5. Simplify
$$\frac{(x^2\sqrt{y})(\sqrt{x}\sqrt[3]{y^2})}{(x^5y^3)^{\frac{1}{2}}}$$
$$\frac{(x^2\sqrt{y})(\sqrt{x}\sqrt[3]{y^2})}{(x^5y^3)^{\frac{1}{2}}} = \frac{x^2y^{\frac{1}{2}}x^{\frac{1}{2}}y^{\frac{2}{3}}}{x^{\frac{5}{2}}y^{\frac{3}{2}}}$$
$$= x^{2+\frac{1}{2}-\frac{5}{2}}y^{\frac{1}{2}+\frac{2}{3}-\frac{3}{2}}$$
$$= x^0y^{-\frac{1}{3}}$$
$$= y^{-\frac{1}{3}} \text{ or } \frac{1}{y^{\frac{1}{3}}} \text{ or } \frac{1}{\sqrt[3]{y}}$$

Now try the following Practice Exercise

Practice Exercise 1 Basic algebraic operations and laws of indices (Answers on page 830)

- 1. Evaluate 2ab + 3bc abc when a = 2, b = -2 and c = 4
- 2. Find the value of $5pq^2r^3$ when $p = \frac{2}{5}$, q = -2 and r = -1
- 3. From 4x 3y + 2z subtract x + 2y 3z.
- 4. Multiply 2a 5b + c by 3a + b
- 5. Simplify $(x^2y^3z)(x^3yz^2)$ and evaluate when $x = \frac{1}{2}$, y = 2 and z = 3
- 6. Evaluate $(a^{\frac{3}{2}}bc^{-3})(a^{\frac{1}{2}}b^{-\frac{1}{2}}c)$ when a=3, b=4 and c=2

7. Simplify
$$\frac{a^2b + a^3b}{a^2b^2}$$

8. Simplify
$$\frac{(a^{5}b^{\frac{5}{2}}c^{-\frac{5}{2}})(ab)^{\frac{5}{3}}}{(\sqrt{a^{3}}\sqrt{b}c)}$$

(b) Brackets, factorisation and precedence

Problem 6. Simplify $a^2 - (2a - ab) - a(3b + a)$

$$a^{2} - (2a - ab) - a(3b + a)$$

= $a^{2} - 2a + ab - 3ab - a^{2}$
= $-2a - 2ab$ or $-2a(1 + b)$

Problem 7. Remove the brackets and simplify the expression:

$$2a - [3\{2(4a - b) - 5(a + 2b)\} + 4a]$$

Removing the innermost brackets gives:

$$2a - [3\{8a - 2b - 5a - 10b\} + 4a]$$

Collecting together similar terms gives:

$$2a - [3(3a - 12b) + 4a]$$

Removing the 'curly' brackets gives:

$$2a - [9a - 36b + 4a]$$

Collecting together similar terms gives:

$$2a - [13a - 36b]$$

Removing the square brackets gives:

$$2a - 13a + 36b = -11a + 36b$$
 or
 $36b - 11a$

Problem 8. Factorise (a) xy - 3xz(b) $4a^2 + 16ab^3$ (c) $3a^2b - 6ab^2 + 15ab$

- (a) xy 3xz = x(y 3z)
- (b) $4a^2 + 16ab^3 = 4a(a + 4b^3)$
- (c) $3a^2b 6ab^2 + 15ab = 3ab(a 2b + 5)$

Problem 9. Simplify $3c + 2c \times 4c + c \div 5c - 8c$

The order of precedence is division, multiplication, addition, and subtraction (sometimes remembered by BODMAS). Hence

$$3c + 2c \times 4c + c \div 5c - 8c$$

= $3c + 2c \times 4c + \left(\frac{c}{5c}\right) - 8c$
= $3c + 8c^2 + \frac{1}{5} - 8c$
= $8c^2 - 5c + \frac{1}{5}$ or $c(8c - 5) + \frac{1}{5}$

Problem 10. Simplify $(2a-3) \div 4a + 5 \times 6 - 3a$

$$(2a-3) \div 4a + 5 \times 6 - 3a$$

= $\frac{2a-3}{4a} + 5 \times 6 - 3a$
= $\frac{2a-3}{4a} + 30 - 3a$
= $\frac{2a}{4a} - \frac{3}{4a} + 30 - 3a$
= $\frac{1}{2} - \frac{3}{4a} + 30 - 3a = 30\frac{1}{2} - \frac{3}{4a} - 3a$

Now try the following Practice Exercise

Practice Exercise 2 Brackets, factorisation and precedence (Answers on page 830)

- 1. Simplify 2(p+3q-r) 4(r-q+2p) + p
- 2. Expand and simplify (x + y)(x 2y)
- 3. Remove the brackets and simplify:

$$24p - [2{3(5p - q) - 2(p + 2q)} + 3q]$$

- 4. Factorise $21a^2b^2 28ab$
- 5. Factorise $2xy^2 + 6x^2y + 8x^3y$
- 6. Simplify $2y + 4 \div 6y + 3 \times 4 5y$
- 7. Simplify $3 \div y + 2 \div y 1$
- 8. Simplify $a^2 3ab \times 2a \div 6b + ab$

1.3 Revision of equations

(a) Simple equations

Problem 11. Solve
$$4 - 3x = 2x - 11$$

- Since 4 3x = 2x 11 then 4 + 11 = 2x + 3xi.e. 15 = 5x from which, $x = \frac{15}{5} = 3$
 - Problem 12. Solve 4(2a-3) - 2(a-4) = 3(a-3) - 1

Higher Engineering Mathematics 6

Removing the brackets gives:

$$8a - 12 - 2a + 8 = 3a - 9 - 1$$

Rearranging gives:

$$8a - 2a - 3a = -9 - 1 + 12 - 8$$

i.e. $3a = -6$
and $a = \frac{-6}{3} = -2$

Problem 13. Solve $\frac{3}{x-2} = \frac{4}{3x+4}$

By 'cross-multiplying':	3(3x+4) = 4(x-2)
Removing brackets gives:	9x + 12 = 4x - 8
Rearranging gives:	9x - 4x = -8 - 12
i.e.	5x = -20
and	$x = \frac{-20}{5}$

= -4

Problem 14. Solve
$$\left(\frac{\sqrt{t}+3}{\sqrt{t}}\right) = 2$$

 $\sqrt{t}\left(\frac{\sqrt{t}+3}{\sqrt{t}}\right) = 2\sqrt{t}$
i.e. $\sqrt{t}+3=2\sqrt{t}$
and $3=2\sqrt{t}-\sqrt{t}$
i.e. $3=\sqrt{t}$
and $9=t$

(c) Transposition of formulae

Problem 15. Transpose the formula $v = u + \frac{ft}{m}$ to make f the subject.

 $f = \frac{m}{t}(v - u)$

$$u + \frac{ft}{m} = v \text{ from which, } \frac{ft}{m} = v - u$$

and
$$m\left(\frac{ft}{m}\right) = m(v - u)$$

i.e.
$$ft = m(v - u)$$

i.e.

Problem 16. The impedance of an a.c. circuit is given by $Z = \sqrt{R^2 + X^2}$. Make the reactance X the subject.

$$\sqrt{R^2 + X^2} = Z$$
 and squaring both sides gives
 $R^2 + X^2 = Z^2$, from which,
 $X^2 = Z^2 - R^2$ and reactance $X = \sqrt{Z^2 - R^2}$

Problem 17. Given that $\frac{D}{d} = \sqrt{\left(\frac{f+p}{f-p}\right)}$ express p in terms of D, d and f.

Rearranging gives:

Squaring both sides gives:

'Cross-multiplying' gives:

$$d^2(f+p) = D^2(f-p)$$

 $\sqrt{\left(\frac{f+p}{f-p}\right)} = \frac{D}{d}$ $\frac{f+p}{f-p} = \frac{D^2}{d^2}$

Removing brackets gives:

 $d^2 f + d^2 p = D^2 f - D^2 p$ Rearranging gives: $d^2 p + D^2 p = D^2 f - d^2 f$ Factorising gives: $p(d^2 + D^2) = f(D^2 - d^2)$ $p = \frac{f(D^2 - d^2)}{(d^2 + D^2)}$ and

Now try the following Practice Exercise

Practice Exercise 3 Simple equations and transposition of formulae (Answers on page 830)

In problems 1 to 4 solve the equations

1. 3x - 2 - 5x = 2x - 4

2.
$$8+4(x-1)-5(x-3)=2(5-2x)$$

3.
$$\frac{1}{3a-2} + \frac{1}{5a+3} = 0$$

$$4. \quad \frac{1}{1-\sqrt{t}} = -6$$

5. Transpose
$$y = \frac{3(F-f)}{L}$$
 for f

6. Make *l* the subject of $t = 2\pi \sqrt{\frac{l}{g}}$ 7. Transpose $m = \frac{\mu L}{L + rCR}$ for L 8. Make *r* the subject of the formula $\frac{x}{y} = \frac{1+r^2}{1-r^2}$

(d) Simultaneous equations

Problem 18.	Solve the simultaneous equations:	
	7x - 2y = 26	(1)
	6x + 5y = 29	(2)

 $5 \times$ equation (1) gives:

$$35x - 10y = 130 \tag{3}$$

 $2 \times$ equation (2) gives:

12x + 10y = 58(4)

Equation (3) + equation (4) gives:

47x + 0 = 188 $x = \frac{188}{47} = 4$ from which.

Substituting x = 4 in equation (1) gives:

$$28 - 2y = 26$$

from which, 28 - 26 = 2y and y = 1

Problem 19. Solve $\frac{x}{8} + \frac{5}{2} = y$ (1)

$$11 + \frac{y}{3} = 3x$$
 (2)

x + 20 = 8y $8 \times$ equation (1) gives: (3) $3 \times$ equation (2) gives: 33 + y = 9x(4)

x - 8y = -20(5) i.e. 0x = 22

and
$$9x - y = 33$$
 (6)

 $8 \times$ equation (6) gives: 72x - 8y = 264(7)

Equation (7) – equation (5) gives:

from which,

$$71x = 284$$
$$x = \frac{284}{71} = 4$$

Substituting x = 4 in equation (5) gives: 4 - 8y= -204 + 20= 8y and y = 3from which,

(e) Quadratic equations

Problem 20. Solve the following equations by factorisation:

(a)
$$3x^2 - 11x - 4 = 0$$

- (b) $4x^2 + 8x + 3 = 0$
- (a) The factors of $3x^2$ are 3x and x and these are placed in brackets thus:
 - (3x))(x)

The factors of -4 are +1 and -4 or -1 and +4, or -2 and +2. Remembering that the product of the two inner terms added to the product of the two outer terms must equal -11x, the only combination to give this is +1 and -4, i.e.,

$$3x^2 - 11x - 4 = (3x + 1)(x - 4)$$

Thus (3x+1)(x-4) = 0 hence

either or

(3x+1) = 0 i.e. $x = -\frac{1}{3}$ (x-4) = 0 i.e. x = 4

(b)
$$4x^2 + 8x + 3 = (2x + 3)(2x + 1)$$

Thus
$$(2x+3)(2x+1) = 0$$
 hence

(2x+3) = 0 i.e. $x = -\frac{3}{2}$ (2x+1) = 0 i.e. $x = -\frac{1}{2}$ either or

Problem 21. The roots of a quadratic equation are $\frac{1}{3}$ and -2. Determine the equation in x.

If
$$\frac{1}{3}$$
 and -2 are the roots of a quadratic equation then
 $(x - \frac{1}{3})(x + 2) = 0$
i.e. $x^2 + 2x - \frac{1}{3}x - \frac{2}{3} = 0$
i.e. $x^2 + \frac{5}{3}x - \frac{2}{3} = 0$
or $3x^2 + 5x - 2 = 0$

Problem 22. Solve $4x^2 + 7x + 2 = 0$ giving the answer correct to 2 decimal places.

8 Higher Engineering Mathematics

From the quadratic formula if $ax^2 + bx + c = 0$ then,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Hence if $4x^2 + 7x + 2 = 0$

then
$$x = \frac{-7 \pm \sqrt{7^2 - 4(4)(2)}}{2(4)}$$

= $\frac{-7 \pm \sqrt{17}}{8}$
= $\frac{-7 \pm 4.123}{8}$
= $\frac{-7 \pm 4.123}{8}$ or $\frac{-7 - 4.123}{8}$
i.e. $x = -0.36$ or -1.39

Now try the following Practice Exercise

Practice Exercise 4 Simultaneous and quadratic equations (Answers on page 830)

In problems 1 to 3, solve the simultaneous equations

$$3x - 3y = 51$$
$$3x + 4y = 14$$

2.
$$5a = 1 - 3b$$

2b + a + 4 = 0

3.
$$\frac{x}{5} + \frac{2y}{3} = \frac{49}{15}$$

 $\frac{3x}{7} - \frac{y}{2} + \frac{5}{7} = 0$

4. Solve the following quadratic equations by factorisation:

(a)
$$x^2 + 4x - 32 = 0$$

(b)
$$8x^2 + 2x - 15 = 0$$

- 5. Determine the quadratic equation in x whose roots are 2 and -5
- 6. Solve the following quadratic equations, correct to 3 decimal places:

(a)
$$2x^2 + 5x - 4 = 0$$

(b) $4t^2 - 11t + 3 = 0$

1.4 Polynomial division

Before looking at long division in algebra let us revise long division with numbers (we may have forgotten, since calculators do the job for us!).

For example,
$$\frac{208}{16}$$
 is achieved as follows:

$$16) 208 \\ 16 \\ 16 \\ 48 \\ 48 \\ 48 \\ \overline{}$$

- (1) 16 divided into 2 won't go
- (2) 16 divided into 20 goes 1
- (3) Put 1 above the zero
- (4) Multiply 16 by 1 giving 16
- (5) Subtract 16 from 20 giving 4
- (6) Bring down the 8
- (7) 16 divided into 48 goes 3 times
- (8) Put the 3 above the 8

(9)
$$3 \times 16 = 48$$

(10)
$$48 - 48 = 0$$

Hence
$$\frac{208}{16} = 13$$
 exactly

Similarly, $\frac{172}{15}$ is laid out as follows:

$$\begin{array}{r}
 13 \\
 11 \\
 15 \\
 172 \\
 15 \\
 22 \\
 15 \\
 7
 \end{array}$$

Hence $\frac{172}{15} = 11$ remainder 7 or $11 + \frac{7}{15} = 11\frac{7}{15}$ Below are some examples of division in algebra, which in some respects is similar to long division with numbers.

(Note that a polynomial is an expression of the form

$$f(x) = a + bx + cx^2 + dx^3 + \cdots$$

Section A

Algebra

9

and **polynomial division** is sometimes required when resolving into partial fractions – see Chapter 2.)

Problem 23. Divide $2x^2 + x - 3$ by x - 1

 $2x^2 + x - 3$ is called the **dividend** and x - 1 the **divisor**. The usual layout is shown below with the dividend and divisor both arranged in descending powers of the symbols.

$$\begin{array}{r} 2x+3\\ x-1 \overline{\smash{\big)}\ 2x^2+\ x-3}\\ \underline{2x^2-2x}\\ 3x-3\\ \underline{3x-3}\\ \overline{\\ \cdot} \end{array}$$

Dividing the first term of the dividend by the first term of the divisor, i.e. $\frac{2x^2}{x}$ gives 2x, which is put above the first term of the dividend as shown. The divisor is then multiplied by 2x, i.e. $2x(x-1) = 2x^2 - 2x$, which is placed under the dividend as shown. Subtracting gives 3x - 3. The process is then repeated, i.e. the first term of the divisor, x, is divided into 3x, giving +3, which is placed above the dividend as shown. Then 3(x-1)=3x-3, which is placed under the 3x-3. The remainder, on subtraction, is zero, which completes the process.

Thus $(2x^2 + x - 3) \div (x - 1) = (2x + 3)$

[A check can be made on this answer by multiplying (2x + 3) by (x - 1) which equals $2x^2 + x - 3$.]

Problem 24. Divide $3x^3 + x^2 + 3x + 5$ by $x + 1$
$(1) (4) (7) 3x^2 - 2x + 5 3x^3 + x^2 + 3x + 5 3x^3 + 3x^2$
$ \frac{-2x^2 + 3x + 5}{-2x^2 - 2x} \\ \frac{5x + 5}{-5} \\ $
$\frac{5x+5}{.}$

- (1) $x \text{ into } 3x^3 \text{ goes } 3x^2$. Put $3x^2$ above $3x^3$
- (2) $3x^2(x+1) = 3x^3 + 3x^2$
- (3) Subtract
- (4) x into $-2x^2$ goes -2x. Put -2x above the dividend
- (5) $-2x(x+1) = -2x^2 2x$
- (6) Subtract
- (7) x into 5x goes 5. Put 5 above the dividend
- (8) 5(x+1) = 5x + 5
- (9) Subtract

Thus
$$\frac{3x^3 + x^2 + 3x + 5}{x + 1} = 3x^2 - 2x + 5$$

Problem 25. Simplify
$$\frac{x^3 + y^3}{x + y}$$

$$\begin{array}{r}
(1) \quad (4) \quad (7) \\
x^2 - xy + y^2 \\
x + y \overline{\smash{\big)}} x^3 + 0 + 0 + y^3 \\
\underline{x^3 + x^2 y} \\
-x^2 y + y^3 \\
\underline{-x^2 y - xy^2} \\
xy^2 + y^3 \\
\underline{xy^2 + y^3} \\
\cdot \cdot \end{array}$$

- (1) x into x^3 goes x^2 . Put x^2 above x^3 of dividend
- (2) $x^2(x+y) = x^3 + x^2y$
- (3) Subtract
- (4) x into $-x^2y$ goes -xy. Put -xy above dividend
- (5) $-xy(x+y) = -x^2y xy^2$
- (6) Subtract
- (7) x into xy^2 goes y^2 . Put y^2 above dividend
- (8) $y^2(x+y) = xy^2 + y^3$
- (9) Subtract

Thus

$$\frac{x^3 + y^3}{x + y} = x^2 - xy + y^2$$